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Nothing contained herein shall be construed as a representation that any recommendations, use or resale of the product or process described 
herein is permitted and complies with the rules or regulations of any countries, regions, localities, etc., or does not infringe upon patents or other 
intellectual property rights of third parties.

The information provided herein is based on data Weidmann Electrical Technology believes to be reliable, to the best of its knowledge and is 
provided at the request of and without charge to those who requested to join our webinar. Accordingly, Weidmann Electrical Technology does not 
guarantee or warrant such information and assumes no liability for its use. This document is subject to change without further notice.

All rights reserved. This presentation and its content are protected by copyright laws. Unauthorised use or reproduction of any part of this 
presentation without prior written permission is strictly prohibited.
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INTRODUCTION
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• Change system voltage
• Reduction of transmission losses by using HV, UHV, EHV

• Galvanic separation of grids
• Different grounding strategies (solidly earthed, compensated, isolated neutral system,…)

• Reduction of short circuit currents
• Short circuit impedance

• Distribution transformers: 4-6 %
• SMPT: 6-12 %
• Large power transformers: 9-16 %

à High currents
• Function of transformer must be guaranteed

during short circuit events
• Key component in transmission
• Reliable but expensive component

TASKS OF TRANSFORMER IN THE NETWORK

Source: CIGRE TB 642
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INTRODUCTION
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Lorenz Forces:
Current and resulting magnetic 
field makes:

• Compression of the winding in 
axial direction

• Expansion forces in radial 
direction

FORCES INSIDE (SINGLE) WINDING

Forces
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INTRODUCTION
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FORCES BETWEEN WINDINGS

Core
HV

Winding
LV

Winding

FRFR

Source: electrical-engineering-portal.com

Copyright © Weidmann Electrical Technology 2023



INTRODUCTION

7

FORCES BETWEEN DISLOCATED WINDINGS
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Source: electrical-engineering-portal.com
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INTRODUCTION
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Interactions
• Tie plates

• Close to the core or outside
• Stray field
• Loosen tightening

• Wire
• Heated by load
• Tilting of wires

• Insulation
• Moisture depending swelling/shrinking
• Viscoelastic and -plastic behavior
• Aging

CLAMPING BEHAVIOR

Tie plates/rods
Steel CTE ~11 ppm/K

Insulation
Cellulose CTE ~70 ppm/K

Wire 
Copper CTE ~17 ppm/K
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Tight clamping is required 
for reliable operation

Keep conductor and windings
at designed positions/locations

Clamping forces/pressure 
designed to transformer type

Deviation due to fabrication
reality vs. design

Clamping pressure is dynamic

FUNDAMENTAL 
STATEMENTS

Example of failure causes (UK) from Cigre TB642
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Ambient inside transformer and 
during fabrication

Immunity to magnetic fields

Immunity to dielectric stress

Mechanical strength

Distant evaluation of signals

REQUIREMENTS FOR DESIGN
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CLAMPING FORCE SENSOR
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• Single mode fiber
• Periodical changes in core refraction index

àInterference filter
• Reflected/transmitted signal depending on distance 

between disturbance
• Intensity depending on number of disturbance

• By changing mechanical tension on fiber
• Change of length/distance between disturbance
àChange of optical signal: wavelength

SENSING PRINCIPLE: FIBER BRAGG GRATING

Source: de.wikipedia.org/wiki/Faser-Bragg-Gitter
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CLAMPING FORCE SENSOR
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Dielectric Fiber Bragg Load Cell:
• Clamping pressure creates strain at one 

grating of the fiber
• Wavelength change of reflected light is 

proportional to the strain
• Temperature change creates thermal 

expansion and tension on grating
• Second grading is used for temperature 

measurement and compensation 
• Bottom and cover plates are used to adjust the 

height according to the other spacers

WORKING PRINCIPLE

Deformation body

Strain

Force

Fiber Bragg Gratings
Support blocks

Board

Copyright © Weidmann Electrical Technology 2023



CLAMPING FORCE SENSOR GEN 3 
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SENSOR FABRICATION

Sensing area
9x12 mm

FO-temperature
probe

Tube
fixation

• Sensor size 
example 165𝑥75	𝑚𝑚

• Sensing element in middle of 
sensor

• Nominal load ≤ 10 !
""#	

• Break load ≥ 35 !
""#	
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SENSOR SPECIFICATION 

• Minimum size 52 x 9 mm (Load and temperature 
sensor, tube fixation)

• Load sensing element 12x9 mm
• Width increments 10 mm (9 mm +1 mm gap)
• Length increments 53 mm  (52 mm +1 mm gap)
• Height 21 mm (20 mm + 2 x 0.5 mm)

recommended to use 2 x 2 mm Nomex® board 
as load distributor

• Nominal load ≤ 10 !
""#	

• Break load ≥ 35 !
""#	

SENSOR SIZE

Sensing 
element Fiber fixationTemperature 

sensor

52mm52mm 52mm

9 mm

9 mm

Gap
1mm

Gap 1mm

Extension Extension with tube

Optical fiber

Ceramic

Nomex® board

Nomex® board

20 mm

0.5 mm

0.5 mm
2 mm

2 mm
Nomex® paper

Nomex® paper
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CLAMPING FORCE SENSOR 
SPECIFICATION
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Measuring range: 0…10 N/mm2

Accuracy: ± 10 % 
Operating Temperature: -40…140 °C

Mineral oil compatibility
Compression: <35 MPa / 5000 psi
AC field strength without PD:  > 6 kV/mm
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BETA TEST DYNALOAD PROJECT
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BACKGROUND

Part of the DynaLoad research project
• Partners: SINTEF Energy, ELVIA, Kolektor ETRA, 

Weidmann, Statnett SF, Statkraft SF, EDF, SP Energy 
Networks, Siemens Energy

Main goal:
• “To characterize the long-term mechanical endurance 

of transformer insulation under heavy dynamic loading 
conditions”

Installation
• Substation Rade, near Oslo (NO)
• Light industry, urban, rural
• Two (2) Transformers 40 MVA (3ph), ONAN 132 kV 
• Commissioned in Q4/2020
• Installation of  eight (8) x F-sensors at the middle limb 

of one transformer
• Possibility to switch on/off the xfrm (n-1)

Source: ARWtr 2022
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BETA TEST DYNALOAD PROJECT
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INSTALLATION AT THE MIDDLE LIMB OF THE TRANSFORMER

Courtesy: Kolektor ETRA
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BETA TEST DYNALOAD PROJECT
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MONITORING OF THE CLAMPING FORCES DURING THE HEAT RUN TEST

WIA – The Winding Integrity Analyzer

Courtesy: Kolektor ETRA

Transformer during Heat Run Test
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IN FIELD INSTALLATION
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SENSORS ON TRANSFORMER

Source: ARWtr 2022
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HEAT RUN TEST
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CHANGE OF CLAMPING PRESSURE DURING THE TEST 
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Courtesy: DynaLoad project
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HEAT RUN TEST
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CHANGE OF CLAMPING PRESSURE DURING THE TEST - CONTINUING
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HEAT RUN TEST
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CHANGE OF CLAMPING PRESSURE, FIRST TWO (2) MIN
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Courtesy: DynaLoad project
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HEAT RUN TEST
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CHANGE OF CLAMPING PRESSURE BEFORE, DURING AND AFTER THE TEST
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STEP TEST – OVERVIEW
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stepping normalnormal
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Courtesy: Dynaload 2022/23
Time d
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STEP TEST – CLOSER VIEW
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stepping normalnormal

Courtesy: Dynaload 2022/23
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STEP TEST – STEP UP/STEP DOWN (FIRST PERIOD)
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Courtesy: Dynaload 2022/23
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STEP TEST – BACK TO NORMAL OPERATION

stepping normal
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Courtesy: Dynaload 2022/23
Time h
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Tight clamping is required 
for reliable operation

Clamping is temperature related and will 
change over time

Sensors for clamping measurement
available

Small changes are detectable

Interpretation of the clamping force 
records requires expertise and experience

Monitoring of clamping force to 
improve transformer reliability

SUMMARY
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STEFAN.JAUFER@WEIDMANN-GROUP.COM

QUESTIONS ?
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ADDITIONAL SOURCES

• DynaLoad:
• https://www.sintef.no/en/projects/2021/dynaload-dynamic-loading-of-transformer-insulation/
• https://prosjektbanken.forskningsradet.no/project/FORISS/319289

• Cigre TB642
• “Transformer reliability survey”, 2015, WG A2.37, https://e-cigre.org/publication/642-transformer-reliability-survey 

• ARWtr 2022
• Inge MADSHAVEN et al.: “On-line Direct Clamping Pressure Monitoring of Power Transformer Windings”, 7th 

International Advanced Research Workshop on transformers, 24-26th Oct. 2022, Baiona Spain, Paper 2.10
• https://ieeexplore.ieee.org/document/9959909
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